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LEITER TO THE EDITOR 

A Monte Carlo renormalisation approach to fractal dimensions 
of infinite cluster, backbone and cutting bonds for percolation 

Takashi Nagatani 
College of Engineering, Shizuoka University, Hamamatsu 432, Japan 

Received 2 June 1986 

Abstract. A Monte Carlo renormalisation group method is presented to study the cluster 
structure of an infinite cluster at the percolation threshold. Applying this technique to 
bond percolation on the square lattice, fractal dimensions of an infinite cluster, its backbone 
and cutting bonds are calculated. This method converges very rapidly with an increase in 
the size of the cell. We estimate that the fractal dimension of an infinite cluster D =  
1.88 *0.02, the fractal dimension of its backbone D, = 1.62 * 0.02 and the fractal dimension 
of its cutting bonds D, = 0.75 * 0.01, up to the scale factor b = 10, in excellent agreement 
with the large-cell Monte Carlo simulation result. 

The percolating infinite cluster is one of the most intensively studied random fractals 
(Kirkpatrick 1979, Stauffer 1979, 1985, Mandelbrot 1982, Deutscher er al 1983, Stanley 
and Coniglio 1983, Kapitulnik and Deutscher 1984, Stanley and Ostrowsky 1986). 
Much of our understanding of the structure of clusters for percolation has been obtained 
by computer simulation. Although such a procedure can yield accurate results and 
many insights into the structure of such clusters, it nevertheless is not an easy task in 
comparison with the renormalisation group approach. Here we develop a Monte Carlo 
renormalisation group method applicable to the cluster structure of percolation. One 
measure of the structure of an infinite cluster for percolation is the manner in which 
the N, the total number of bonds in the infinite cluster, scales with the linear dimension 
L of the cluster, N - L D  where D is the fractal dimension of the infinite cluster. The 
infinite cluster is composed of a backbone through which an electrical current flows 
and with dangling bonds hanging on it. The number Nb of bonds within the backbone 
also scales with a different fractal dimension Db: N b  - LDh. Furthermore, there are 
two kinds of bonds in the backbone: (a) cutting (singly connected) bonds, which have 
the property that if they are cut, the backbone ceases to conduct and (b) multiply 
connected bonds, which have the property that they can be cut without interrupting 
the flow (Stanley 1977). The numberN, of cutting bonds in the infinite cluster scales 
with N,-  LDc. Coniglio (1981,1982) provided a rigorous argument that for all d, 
D, = 1/ v where the v represents the connectedness length exponent. 

In this letter, we shall calculate the fractal dimensions D, D b  and D, by using a 
Monte Carlo renormalisation group method (Lobb and Karasek 1980, Reynolds ef al 
1980, Burkhardt and van Leeuwen 1982). We restrict ourselves to the bond percolation 
problem on the square lattice. 
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The probability that a cell of size b is connected is given by 

k 

where the summation is over all configurations of the system and Pk is the probability 
of a particular configuration, while fk  is unity if that configuration spans and zero 
otherwise. We find that the geometric textures formed by the repeated position-space 
renormalisation group transformations correspond to the ‘regular random fractals’ 
proposed by Martin and Keefer (1985). The geometric texture of an infinite cluster is 
formed by the repeated transformations with each spanning configuration. By applying 
N renormalisations to a spanning cluster in the cell of size bN,  the number N i ( b N )  
of bonds within the infinite cluster is obtained for a sufficiently large N: 

N i ( b N ) =  ni ( l )n i (2 ) .  . . n i ( N )  

- ( ( n J N  

- ( b N ) D  (2) 

where the n i ( N )  indicates the number of bonds within a spanning cluster at the Nth  
renormalisation. Here the ((n,)) is the average number of bonds within a spanning 
cluster: 

where the ni,k represents the number of bonds within the spanning cluster of a particular 
configuration k. 

One can consider a transformation in which one passes from a system of cells of 
size bl to a system of cells of size b2.  Such a ‘cell-to-cell’ transformation enables one 
to have a rescaling length b l / b 2 .  At the fixed point R(b, ;  p * )  = R(bz;  p * ) ,  an incipient 
infinite cluster appears. The fractal dimension D of the infinite cluster is given by 

where the asterisk indicates the value at the fixed point. Similarly, we derive the fractal 
dimensions of the backbone and its cutting bonds: 

D b  = ln(((nb))T/((nb)):)/ln(bl/ b2) ( 5 )  

0, = ln(((n,))T/((n,))T)/ln(b,/bz) ( 6 )  

where the n b  and the n, represent respectively the number of bonds through which an 
electrical current flows in the spanning cluster and the number of bonds such that if 
one is cut the entrances are no longer connected to the exits in the cell. 

A cell of the type used here is shown in figure l (a) .  It can be shown by duality 
that p *  = f independently of the scale factor b (Bernasconi 1978). Normalising the 
sum in (3) to extend over M connected Monte Carlo realisations and evaluating at 
p = p * - ’  - 2, we obtain 
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Figure 1. ( a )  Cell used for b = 3 transformation. The cell is connected if a continuous 
path exists from bottom to top. ( b )  Structure of a spanning cluster. Broken, full and bold 
full lines indicate dangling, multiply connected and cutting bonds. 

where the ni,k indicates the number of bonds within the spanning cluster of a connected 
Monte Carlo realisation. Lattices were generated and studied using the cluster multi- 
labelling technique of Hoshen and Kopelman (1976) (Stauffer 1985). A connected 
Monte Carlo realisation is shown in figure l ( b ) .  Its backbone, cutting bonds and 
dangling bonds are respectively indicated by full, bold full and broken lines. Table 1 
shows estimates of the fractal dimensions 0, Db and D,, for the number (10 000) of 
realisations. The derivations of these estimates are -AD = 0.03, ADb = 0.04 and 
ADc = 0.06. These data demonstrate the quick convergence of the method. Within the 
errors given, the values obtained are indistinguishable from one another. This implies 
that equation ( 2 )  is valid even for small b in the lattices shown by figure 1. 

We can improve on the cell-to-cell approach by fitting all of the data to equation 
(7). As can be seen from the plots of ln(((ni))*), h(((nb))*) and ln(((nc))*) against ln(b) 
(figure 2 ) ,  the deviation from the expected straight line is small, even for small b. The 
fits yield 

Db = 1.62 f 0.02 

This value of the fractal dimension D of an infinite cluster is in good agreement with 
the earlier results from the large-cell Monte Carlo renormalisation group method with 
use of a ghost field (Reynolds et a1 1980) and the large-cell Monte Carlo simulation 
(Herrmann and Stanley 1984). The value of the fractal dimension Db of its backbone 
also agrees with the large-cell Monte Carlo simulation data. The value of the fractal 
dimension D, of cutting bonds is in good agreement with the inverse of the connected- 
ness length exponent v. 

D = 1.88 * 0.02 D, = 0.7 5 f 0.0 1. (8) 

Table 1. Estimates of D, D, and D, obtained by changing the lattice length scale by a 
factor b,/ b,. The number of Monte Carlo realisations considered for each case is 10 000. 
The statistical uncertainties in each estimate are AD = 0.03, ADb = 0.04 and ADc = 0.06. 

~~ 

4 5 6 7 9 LO 
3 b l l  b, I 3 6 7 s 9 

- 

D 1.83 1.88 1.88 1.88 1.91 1.86 1.92 
Db 1.68 1.58 1.65 1.60 1.58 1.64 1.60 
0, 0.76 0.76 0.75 0.75 0.70 0.77 0.72 
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Figure 2. Plots of ((n,))* (O), ((nb))* (A) and ((n,))* (0) against 6. The slopes of these lines 
give estimates for the three fractal dimensions. 

In summary, we have used the Monte Carlo renormalisation method to derive the 
three fractal dimensions (of an infinite cluster, its backbone and cutting bonds) in 
relation to the cluster structure of an  infinite cluster at  the percolation threshold. This 
method gives quick convergence with an  increase in the cell size. With relatively small 
cells, we obtain values in excellent agreement with the large-cell Monte Carlo simulation 
result. 
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